Matematică
maya09
3

1. a)Determinati elementele multimii A = { x ∈ N|( x + 2) se divide cu 5, x = ab cu bara. } b) Determinati elementele multimilor: A = {x|x ∈ N, x = 2k + 3, 1 ≤ k ≤ 5 }  si B = {y|y ∈ N, [latex] 5^{3} [/latex] - 4 ≤ y ≤ [latex] 2^{7} [/latex] - 1} 2. Fie A= { 1,2,3,4...99,100}. Determinati numarul submultimilor B ⊂ a, STIINDA CA {1,2} ⊂ B  ⊂ {1,2,...81}

+0
(1) Răspunsuri
lleic

Este foarte simplu .Daca avem x+2 divizibil la 5 iar x=ab cu bara⇒ultima cifra a lui x+2=0 sau 5 dupa criteriul de divizibilitate.Deci ultima cifra a lui x este 8 sau 3 deci daca x=ab b poate avea 2 valori ,iar a poate avea 9 valori,deci sunt 2x9=18 nr ce indeplinesc conditia: 13;18;23;28;33;38;43;48;53;58;63;68;73;78;83;88;93;98 x=2k+3 k=1⇒x=2·1+3=5 k=2⇒x=2·2+3=7 k=3⇒x=3·3+3=12 k=4⇒x=3·4+3=15 k=5⇒x=3·5+3=18 125-4=121 2la a 7=128-1=127 y∈(121;122:123;124;125;126;127 la ultima cred ca e doar o submultime

Adaugă răspuns