Mathematics
HarrisKulka
11

find tan x/2, given that tan x=3 and x terminates in pi < x < ((3)pi/2)

+1
(1) Answers
brookie

[latex]tan \frac{x}{2} =\pm \sqrt{\frac{1-cos x}{1+cos x}}[/latex] Find cos using trig identities: [latex]sec x = \frac{1}{cos x} \\ tan^2 x = sec^2 x -1[/latex] Therefore [latex]cos x = \frac{1}{sec x} =\pm \frac{1}{\sqrt{tan^2 x +1}}[/latex] Sub in tan x = 3, (Note that x is in 3rd quadrant, cos x < 0) [latex]cos x =- \frac{1}{\sqrt{3^2 +1}} = -\frac{1}{\sqrt{10}}[/latex] Finally, sub into Half-angle formula:(Note x/2 is in 2nd quadrant, tan x<0)[latex]tan \frac{x}{2} = -\sqrt{\frac{1+\frac{1}{\sqrt{10}}}{1-\frac{1}{\sqrt{10}}}} = - \sqrt{\frac{\sqrt{10} +1}{\sqrt{10}-1}}[/latex]

Add answer